MODBUS-RTU for Humidifier

MODBUS-RTU communication protocol specifications for control of Humidifier Devices in network

Document name: MODBUS-RTU_UMIDMSo3_o1-13_EN Software installed: UMIDMSo3.hex Rev. 12 and subsequent

READ AND KEEP

INDEX

GENERA	4 <i>L DESC</i>	RIPTION	
Page 3	1.1	Modbus protocol	
Page 3	1.2	Serial configuration	
Page 4	1.3	Format of messages (Frame)	
Page 5	1.4	Synchronisation of messages	
Page 5	1.5	Error messages (exceptions)	
DESCRI	PTION C	OF COMMANDS	
Page 6	2.1	Register reading (0x03)	
Page 7	2.2	Writing of single register (0x06)	
Page 8	2.3	Device identification data reading (0x2B / 0x0E)	
DESCRI	DTION (OF REGISTERS AND ADDRESSES	
DEJURI	pillin l		
			3
Page 10	3.1	Analogical inputs (read-only)	3
			3
Page 10	3.1	Analogical inputs (read-only)	3
Page 10 Page 12	3.1 3.2	Analogical inputs (read-only) Parameters (read / write)	3
Page 10 Page 12 Page 14	3.1 3.2 3.2a	Analogical inputs (read-only) Parameters (read / write) Read-only hour meter parameters (read)	3
Page 10 Page 12 Page 14 Page 14	3.1 3.2 3.2a 3.2b	Analogical inputs (read-only) Parameters (read / write) Read-only hour meter parameters (read) Configuration parameters (read / write)	3
Page 10 Page 12 Page 14 Page 14	3.1 3.2 3.2a 3.2b 3.3 3.4	Analogical inputs (read-only) Parameters (read / write) Read-only hour meter parameters (read) Configuration parameters (read / write) Inputs - outputs - alarms status (read-only)	3

1: GENERAL DESCRIPTION

1.1

MODBUS PROTOCOL

The data communication system based on Modbus protocol makes it possible to connect up to 247 instruments in a common RS 485 line with standardised communication mode and format.

Communication is implemented in half duplex by means of frames (in continuous transmission). Only the master (PC, PLC ...) can begin question/answer dialogue with the slaves (only one addressed slaves) and the interrogated slave responds. The slave answers after a minimum pause of 3.5 characters between the frame received and that which must be transmitted.

There is also the broadcast communication mode where the master sends a message to all the slaves simultaneously, which do not provide a return answer; however this latter mode cannot be used with this control.

The serial data transmission mode implemented on the control is the RTU type (Remote Terminal Unit), where data is exchanged in binary format (characters of 8 bit).

1.2

SERIAL CONFIGURATION

Serial line:	RS485
Baud rate:	9600
Data length:	8 bit
Parity:	none
Stop bit:	1

Serial transmission of characters in RTU format

Start	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Stop

FORMAT OF MESSAGES (FRAME)

According to the MODBUS-RTU standard, each message (Frame) consists in the following parts:

Start	Device address	Function code	Data	CRC16		Stop
4.5msec silence			n x Byte	LSByte	MSByte	4.5msec silence

- Start / Stop:

The message begins with a silence of 4.5ms (time 3.5 x greater then time for transmission of a character). See chap. 1.4 for further information.

- Device address:

The address of the device with which the master has established dialogue; it is a value between 1 and 247. The address 0 is reserved for the broadcast, message sent to all slave devices (not active on this control). The RS485 line makes it possible to connect together up to 32 devices (1 Master + 31 slaves), but with specific "bridges" or repeater devices it is possible to exploit the entire logic addressing field.

- Function code:

The function code to be executed or which has been executed; codes 0x03 (register reading), 0x06 (single register reading) and 0x2B/0x0E (identification data reading) are active in the device.

- Data:

Data which must be exchanged.

- CRC16:

The format error control field according to the algorithm CRC16. CRC16 is calculated on the whole message by the transmitting master device and is attached to the message itself. At the end of reception, the slave calculates the CRC16 on the message and compares it with the value attached by the master; if the two values do not correspond, the message will be considered invalid and it will be discarded without sending the master any response.

The following fragment of code C illustrates the calculation mode of CRC16:

```
unsigned int CRC16
void Modbus CRC(unsigned char *Frame, unsigned char FrameLength)
{
unsigned char ByteCount;
unsigned char i;
unsigned char bit_lsb;
CRC16 = 0xFFFF;
for (ByteCount=0;ByteCount<FrameLength;ByteCount++)</pre>
 CRC16^=Frame[ByteCount];
 for (i=0;i<8,i++)
   bit lsb = CRC16 \& 0x0001;
   CRC16 = CRC16>>1;
   if (bit lsb == 1)
    CRC16 ^= 0xA001;
   }
 }
}
```

SYNCHRONISATION OF MESSAGES

Message synchronisation between transmitter and receiver is achieved by interposing a pause of at least 4 ms between messages. If the receiver receives no Byte for 4 ms, it deems the previous message completed and considers the subsequent Byte received as the first of a new message.

The slave, once it has received the complete message, decodes it and, if there are no errors, sends the response message to the master. In order to send the response, the slave engages the RS485 line, waits for a 4.5 ms pause, sends the complete message, waits for a 4.5 ms pause and then frees the RS485 line. The master unit must respect these times, in order to avoid the risk of overlapping transmissions. It is especially necessary to envision an adequate reception time-out for the response before beginning a new transmission (typical time-out value: 500msec or more).

1.5

ERROR MESSAGES (EXCEPTIONS)

If the device is not capable of performing the operation requested by the command received, it responds with an error message according to the following format:

Device address	Function code	coae		C16
Byte	Byte	Byte	LSByte	MSByte

- Device address:

The address of the slave device which responds

Function code:

Functioning code with MSb =1 (to indicate the exception); example 0x83 (for the reading 0x03) or 0x86 (for the writing 0x06)

Exception code:

The following exception codes are managed by the device:

Exception code	Description	Cause for generation of exception
0x01	Function not implemented	And unavailable function code has been requested, different than 0x03, 0x06 and 0x2B/0x0E.
0x02	Invalid address	 This is generated in different situations: a register which is not implemented (or an inexistent area) has been requested the reading of a number of registers which goes beyond the implemented area has been requested (starting from the requested address) you have attempted to write in a read-only area
0x03	Invalid value for the datum	This is generated in different situations: the reading of more than 10 registers has been requested the DeviceIdCode of the message 0x2B/0x0E is not correct you have attempted to write a parameter with a value out of range

CRC16:

The format error control field according to the algorithm CRC16.

N.B.: If the device identifies a format error in the message received or in CRC16, the message is discarded (it is not considered valid) and no response is generated.

2: DESCRIPTION OF COMMANDS

In order to standardise the interpretation mode, all the registers are managed in Word format (16 bit), even if they contain an 8 bit parameter.

2.1

REGISTER READING (0X03)

Format of command sent by Master:

Device address	Function code	Register address			ber of sters	CRC16	
Byte	Byte	MSByte	LSByte	MSByte	LSByte	LSByte	MSByte

- Device address:

The address of the slave device to be interrogated

Function code:

Function code to be executed, in this case register reading (0x03)

Register address:

starting register address for reading expressed in two Bytes; (MSByte) and (LSByte).

Number of registers:

indicates the number of Words requested starting from the initial address. If more than 1 register is requested, in the response message all of the registers requested with consecutive addresses will be supplied starting from the address carried in the "register address" field.

The number of registers to be read is expressed in two Bytes, in particular for this control (MSByte) it must always be 0x00 and (LSByte) with a 1-10 range.

- CRC16:

The format error control field according to the algorithm CRC16.

Format of slave's response message:

Device address	Function code	N. of Bytes of datum	Datum 1		Datu	ım 2	Datu	ım n	CR	C16
Byte	Byte	Byte	MSByte	LSByte	MSByte	LSByte	MSByte	LSByte	LSByte	MSByte

Device address:

The address of the slave device which responds

Function code:

Function code being answered, in this case register reading (0x03)

Number of Bytes of datum:

contains the total number of Bytes of the data.

Consider that the number of Bytes of the datum is twice the number of registers (since it deals with words). For example, if 2 registers are requested in the demand message, in the response message the number of Bytes of the datum must be set at 4.

- Datum n :

contains the sequence of data each expressed in two Bytes; (MSByte) and (LSByte).

CRC16:

The format error control field according to the algorithm CRC16.

WRITING OF SINGLE REGISTER (0X06)

Format of command sent by Master:

Device address	Function code	Register address		Dat	tum	CR	C16
Byte	Byte	MSByte	LSByte	MSByte	LSByte	LSByte	MSByte

Device address:

The address of the slave device to be interrogated

Function code:

Function code to be executed, in this case single register writing (0x06)

- Register address:

register address to be written expressed in two Bytes; (MSByte) and (LSByte).

- Datum

value to be assigned to register expressed in two Bytes; (MSByte) and (LSByte).

- CRC16:

The format error control field according to the algorithm CRC16.

Format of slave's response message:

Device address	Function code	Register address		Dat	tum	CR	C16
Byte	Byte	MSByte	LSByte	MSByte	LSByte	LSByte	MSByte

The response message is a simple echo of the request message to confirm that the variable has been modified.

MODBUS-RTU

2.3

DEVICE IDENTIFICATION DATA READING (0X2B / 0X0E)

Format of command sent by Master:

Device address	Function code	Type MEI	Read Device Id Code	Object Id	CF	RC16
Byte	Byte	Byte	Byte	Byte	LSByte	MSByte

- Device address:

The address of the slave device to be interrogated

Function code:

Function code to be executed, in this case identification data reading (0x2B)

MEI type:

Type of Modbus Encapsulated Interface: must be 0x0E.

- Read Device Id Code:

Indicates the type of data access: must be 0x01.

Object Id:

Indicates the starting object for data reading (range: 0x00 – 0x02).

- CRC16:

The format error control field according to the algorithm CRC16.

Format of slave's response message:

Device address	Functio n code	Type MEI	Read Device Id Code	Confor mity level	More Follows	Next Object Id	Number Of Object	Object Id (n)	Object Length (n)	Object Value (n)	CR	C16
Byte	Byte	Byte	Byte	Byte	Byte	Byte	Byte	Byte	Byte	ASCII String	LSByte	MSByte

- Device address:

The address of the slave device which responds

Function code:

Function code to be executed, in this case identification data reading (0x2B)

MEI type:

type of Modbus Encapsulated Interface: must be 0x0E.

- Read Device Id Code:

indicates the type of data access: must be 0x01.

- Conformity level:

indicates the conformity level of the slave: it is always 0x01.

More Follows:

indicates the additional number of transactions requested: it is always 0x00.

Next Object Id:

indicates the object to be requested in an eventual subsequent transaction: it is always 0x00.

- Number Of Object:

number of objects which follow (1, 2 or 3).

- List of:
- Object Id:

current object number.

- Object Length:

length of following string.

- Object Value:

ASCII string containing identification information.

CRC16:

The format error control field according to the algorithm CRC16.

Example of reading of all identification information of controls with UMIDMS03 rev.13 software and (address 1)

Request message: (01 2B 0E 01 00 70 77)

Device address: 0x01Function code: 0x2BMEI type: 0x0E

- Read DeviceIdCode: 0x01

ObjectId: 0x00

- **CRC16:** to be calculated on previous values

Response message: (01 2B 0E 01 01 00 00 03 00 04 50 45 47 4F 01 08 554D 49 44 4D 53 30 33 02 03 30 31 33 73 1C)

Device address: 0x01Function code: 0x2BMEI type: 0x0E

Read DeviceIdCode: 0x01
 Conformity level: 0x01
 More Follows: 0x00
 Next ObjectId: 0x00
 Number Of Object: 0x03

ObjectId: 0x00Object Length: 0x04

Object Value: 'PEGO' (Vendor Name field in ASCII)

ObjectId: 0x01Object Length: 0x08

- **Object Value**: 'UMIDMS03' (Product Code field in ASCII)

ObjectId: 0x02Object Length: 0x03

Object Value: '013' (Revision field in ASCII)CRC16: to be calculated on previous values

REGISTERS AND ADDRESSES DESCRIPTION

Each register has a dimension of 16 bits. Blocks of variables have been formed (each with different address MSByte) depending on the type of variables. The following paragraphs describe in detail all the blocks available and, for each block, the variables implemented.

At the beginning of each table, on the first line is indicated whether the data corresponding to it can only be read (READ-ONLY) or read and written (READ/WRITE).

DESCRIPTION OF TABLE COLUMNS:

- Register:

Indicates the register address to be used in the structure of the Modbus command to read or write the data in the instrument. It is expressed in two Bytes; (MSByte) and (LSByte).

Description:

Description of register and any corresponding programming variable of the instrument.

Meaning and range of Bytes:

Dimension (MSByte and LSByte), allowed range and notes relative to register.

- U.M.:

Unit of measurement of datum contained in register.

- Conv. :

The values in the registers which represent the variables with a sign require a conversion and are marked by an **X** sign in the following column.

Conversion procedure:

- if the value contained in the register is in between 0 and 32767, it represents a positive number or zero (the result is the value itself)
- if the value contained in the register is in between 32768 and 65535, it represents a negative number (the result is the value of the register 65536)

- Molt:

Indicates the multiplication factor that must be applied to the datum of the register and which, combined with the U.m and Conv column, allows the value it contains to be interpreted exactly. Examples:

A datum (0x0012) = 18 with Molt =0.1 / U.m= $^{\circ}$ C / Conv=C corresponds to a temperature of (18x0,1)= 1.8 $^{\circ}$ C A datum (0xFFF0) = 65520 with Molt =0.1 / U.m= $^{\circ}$ C / Conv=C corresponds to a temperature [(65520 – 65536) x0.1] = -1.6 $^{\circ}$ C A datum (0x0078) = 120 with Molt =1 / U.m= min / Conv=C corresponds to the time of (120x1)= 120 minutes A datum (0x0014) = 20 with Molt =0.1 / U.m= $^{\circ}$ C / Conv=C corresponds to a temperature of (20x0.1)= 2.0 $^{\circ}$ C

ANALOGICAL INPUTS

	READ-ONLY									
Register	Description	N	leaning and range of Bytes	U.M.	Conv	Molt				
256	Room humidity	MSByte LSByte	Resolution 1% range: 0 99% Values > 99% indicate probe faulty	%		1				
257	External humidification consent 0-10V	MSByte LSByte	Resolution 1% range: 0 100%	%		1				
258	Ambient temperature	MSByte LSByte	Resolution 0.12 range: -45°C . +99°C Values > +99°C indicate probe faulty	°C	X	0,1				
259	Channel humidity	MSByte LSByte	Resolution 1% range: 0 99% Values > 99% indicate probe faulty	%		1				
260	Current read by T.A.	MSByte LSByte	Resolution 0.1 A range: 0,0 64.0A	Α		0,1				
261	Percentage of actual steam production (calculated)	MSByte LSByte	Resolution 1% range: 0 100%	%		1				

PARAMETERS

READ / WRITE								
Register	Description	Λ	leaning and range of Bytes	U.M.	Conv	Molt		
768	temperature setpoint	MSByte LSByte	0.1 2 steps range: 0HSE	°C		0,1		
769	Humidity setpoint	MSByte LSByte	1% steps range: 0HSE	%		1		
770	Pr Steam output percentage	MSByte LSByte	1% steps range: 20100 %	%		1		
771	bP proportional band	MSByte LSByte	1% steps range: 120 %	%		1		
772	StC Channel humidity setpoint	MSByte LSByte	1 % steps range: 2599 %	%		1		
773	r0 Channel humidity differential	MSByte LSByte	1 % steps range: 1(StC - 20) %	%		1		
774	r1 temperature differential	MSByte LSByte	0.1 2 steps range: 0,210,0 °C	°C		0,1		
775	SO deconcentration discharge duration	MSByte LSByte	0.1 second steps range: 0,112,7 seconds	sec		0,1		
776	S2 Deconcentration discharge interval	MSByte LSByte	1 minute steps range: 1250 minutes	min		1		
777	S3 Electrode activ. delay after discharge	MSByte LSByte	1 second steps range: 112 seconds	sec		1		
778	S4 Water discharge due to inactivity	MSByte LSByte	1 hour steps range: 024 hours (0 = disabled)	hours		1		
779	S5 Min. current differential for loads	MSByte LSByte	0.1 ampere steps range: 0,210,0 amperes	А		0,1		
780	S6 Percentage of overcurrent due to discharge	MSByte LSByte	- 1 % steps range: 150 %	%		1		
781	S7 Duration of discharge due to overcurrent	MSByte LSByte	0.1 second steps range: 0,150.0 seconds	sec		0,1		

Register	Description	N	leaning and range of Bytes	U.M.	Conv	Molt
782	S8 Min. filling current differential	MSByte LSByte	0.1 ampere steps range: 0,05,0 amperes (0 = loading by steps)	А		0,1
783	S9 Operation setting	MSByte LSByte	steps of 1 range: 08	num		1
784	S10 Discharge test	MSByte LSByte	range: 01 0 = disabled 1 = enabled	num		1
785	CA1 Room humidity probe calibration	MSByte LSByte	steps of 1 %, with sign range: -20+20 %	%	х	1
786	CA2 Channel humidity probe calibration	MSByte LSByte	steps of 1 %, with sign range: -20+20 %	%	х	1
787	CA3 Room temperature probe calibration	MSByte LSByte	steps of 0.1 ②, with sign range: -10.0+10.0 °C	°C	х	0,1
788	t1 Humidifier restart delay	MSByte LSByte	1 second steps range: 0240 seconds	sec		1
789	t2 Time ON for essence	MSByte LSByte	1 second steps range: 130 seconds	sec		1
790	t3 Time OFF for essence	MSByte LSByte	1 minute steps range: 099 minutes	min		1
791	t4 Manual activation time (in stand-by) of extraction fans	MSByte LSByte	1 hour steps range: 024 hours (0 = disabled)	hours		1
792	t5 Activation time E9 serious Alarm	MSByte LSByte	1 minute steps range: 099 minutes (0 = disabled)	min		1
793	In1 Digital input In1	MSByte LSByte	steps of 1, with sign range: -10+10	num	Х	1
794	In2 Digital input In2	MSByte LSByte	steps of 1, with sign range: -10+10	num	Х	1
795	In3 Digital input In3	MSByte LSByte	steps of 1, with sign range: -10+10	num	Х	1
796	do4 Digital output do4	MSByte LSByte	steps of 1, with sign range: -3+4	num	Х	1
797	do5 Digital output do5	MSByte LSByte	steps of 1, with sign range: -3+4	num	Х	1
798	HSE Maximum setpoint limit	MSByte LSByte	1 % steps range: 099 %	%		1

3.2a

READ-ONLY PARAMETERS

	READ							
Register	Description	N	leaning and range of Bytes	U.M.	Conv	Molt		
512	S1 Humidifier operation hour meter	MSByte LSByte	1 hour steps range: 065535	hours		1		

3.2b

CONFIGURATION PARAMETERS

	READ / WRITE							
Register	Description	N	Meaning and range of Bytes			Molt		
1024	I1 Current at 100% of production	MSByte LSByte	0.1 ampere steps range: 2,060,0 amperes	А		0,1		

INPUTS / OUTPUTS / ALARMS STATUS

	READ-ONLY								
Register	Description		Mea	aning of Bytes	U.M.	Conv	Molt		
			bit 7 (MSb)						
			bit 6						
			bit 5						
		MSByte	bit 4	Not used					
		IVISBYLE	bit 3	Not used					
			bit 2						
			bit 1						
1200			bit 0 (LSb)				4		
1280	output status		bit 7 (MSb)	Not used	num		1		
			bit 6	Not used					
			bit 5	Not used					
		I CDvto	bit 4	RL5 (do5) configurable					
		LSByte	bit 3	RL4 (do4) alarm/configurab.					
			bit 2	RL3 water discharge pump					
			bit 1	RL2 EV water load					
			bit 0 (LSb)	RL1 electrodes					

	READ-ONLY								
Register	Description		Меа	aning of Bytes	U.M.	Conv	Molt		
			bit 7 (MSb)						
			bit 6						
			bit 5						
		MSByte	bit 4	Not used					
		IVISBYLE	bit 3	Not used					
			bit 2						
			bit 1				 -		
1201			bit 0 (LSb)				4		
1281	input status		bit 7 (MSb)	Not used	num		1		
			bit 6	Reduction steam pr. from In1					
			bit 5	Discharge from digital input					
		I CDvrto	bit 4	Discharge from keyboard input					
		LSByte	bit 3	Reduction steam pr. from In3					
			bit 2	Max. level sensor					
			bit 1	Reduction steam pr. from In2					
			bit 0 (LSb)	Steam production consent					

MODBUS-RTU

	READ-ONLY								
Register	Description		Meaning of Bytes			Conv	Molt		
			bit 7 (MSb)	Not used					
MSByte		bit 6	Not used						
		bit 5	Not used						
	NACD: #a	bit 4	Not used						
	ivisByte	bit 3	Not used						
		bit 2	Not used						
			bit 1	Serious alarm from digital input (E9)					
4202			bit 0 (LSb)	Alarm from digital input (E8)			1		
1282	alarm status		bit 7 (MSb)	EEPROM error (EE)	num				
			bit 6	Level alarm					
			bit 5	Water discharge alarm (E6)					
		LCD L	bit 4	Water discharge pre-alarm (E5)					
		LSByte	bit 3	Water load alarm (E3)					
		bit 2	Channel probe fault (E2)						
		bit 1	Current reading fault (E1)						
		bit 0 (LSb)	Room probe fault (E0)						

DEVICE STATUS

READ / WRITE									
Register	Description		М	eaning of Bytes	U.M	Conv	Molt		
	N	MSByte	bit 7 (MSb) bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0 (LSb)	not used not used not used timed extraction fan forcing enabling essence status modification forcing enabling hour meter reset status modification enabling discharge forcing modification enabling by Modbus stand-by status modification enabling	U.M	Conv	Molt		
	device status	device status LSByte	bit 7 (MSb) bit 6 bit 5 bit 4	not used not used not used timed extraction fan forcing 1 = enables timed functioning of extraction fans (if conditions exist) 0 = no function	num		1		
			bit 3	essence enabling status change forcing. 1 = sets essence enabling at ON 0 = sets essence enabling at OFF hour meter reset forcing by Modbus	-				
			bit 2	1 = resets hour meter by Modbus 0 = does not reset hour meter by Modbus discharge forcing status by Modbus	-				
			bit 1 bit 0 (LSb)	1 = discharge force by Modbus 0 = discharge OFF by Modbus stand-by status 1 = stand-by	-				
		1.05	(200)	0 = ON					
1537	Steam production forcing by Modbus (only if S9=8)	MSByte LSByte	1% steps range: 0 10	0%	%		1		

To request the modification of one of the status bits of the device, the master must send the requested value for the bit in LSByte and the corresponding bit set at 1 in MSByte. Example: in able to force the standby status, the master must send MSByte = 00000001 and LSByte = 00000001. As soon as the command is sent the hour meter is immediately reset at zero and the relative bit will be read at 0 (to check whether the command was successful, just make sure that the hour meter S1 has been reset at zero).

N.B. – The discharge forcing and steam production commands envision a 1 minute time-out; if during this

MODBUS-RTU

period the command is not sent back, upon expiring of this time the steam production will be set at zero and the discharge pump will be disabled. This places the humidifier in safe conditions in case of accidental disconnections of the network.

4: GLOSSARY

- Binary Number:

This is used in computing for the internal representation of numbers, thanks to the simplicity of physically implementing an element with 2 states (0,1) instead of a higher number, but also for the correspondence with logical true and false values.

Decimal number:

In the decimal system, all whole numbers are represented by using the 10 digits which indicate the first ten natural numbers, including zero. The value of each of these digits depends on its position inside the number and increases by powers of 10 proceeding from the right to the left.

- Hexadecimal number:

This belongs to a base 16 positional numerical system; namely which uses 16 symbols instead of the 10 in the traditional decimal numerical system. For the hexadecimal, normally symbols from 0 to 9 and than letters from A to F are used, for a total of 16 symbols. By agreement, a number expressed in hexadecimal is preceded by 0x (example 0x03) or by H (example H03).

- bit:

A bit is a binary digit, namely one of the two symbols of the binary numerical system, traditionally called zero (0) and one (1). It represents the unit of definition of a logical status. It is also defined as the elementary computing unit treated by a processor.

- Byte:

It is the amount of bits necessary to define an alphanumerical character; in particular one Byte is made up of the sequence of 8 bits (ex. 10010110).

- Word:

Unit of measurement which fixes information length at 16bits which is also equivalent to 2 Bytes (ex. 10010110 01101011).

- LSb:

least significant bit of a binary number (first bit to the right of the number indicated)

- MSb:

most significant bit of a binary number (first bit to the left of the number indicated)

LSByte:

least significant Byte of a Word (Byte to the right of the indicated Word)

MSByte:

most significant Byte of a Word (Byte to the left of the indicated Word)

Р	F	30) S.	r l	

Via Piacentina, 6/b

45030 OCCHIOBELLO -ROVIGO-

Tel: 0425 762906 Fax: 0425 762905

www.pego.it

e-mail: info@pego.it

		• •		
1)	istr	าทา	it 🔿	r
\mathbf{L}	เอน	IDU	มเบ	ı