MODBUS-RTU for PLUSR EXPERT DL3

MODBUS-RTU protocol specifications for LAN control of PLUSR EXPERT DL3 series devices

Document: MODBUS-RTU_PLUSRDL3_02-16_ENG

Installed Software: PLUSR_DL3 Rev. 0

REED AND KEEP

INDEX

GENER	RAL DES	CRIPTION	
Pag. 3	1.1	Modbus protocol	
Pag. 3	1.2	Serial configuration	
Pag. 4	1.3	Message format (Frame)	
Pag. 5	1.4	Messagges synchronization	
Pag. 5	1.5	Error messagges (exceptions)	
СОММ	ANDS DE	ESCRIPTION	
Pag. 6	2.1	Register reading (0x03)	
Pag. 7	2.2	Single register writing (0x06)	
Pag. 8	2.3	Data reading of device identification (0x2B / 0x0E)	
REGIS	TERS AN	ID ADDRESSES DESCRIPTION	
Pag. 10	3.1	Analog inputs (read-only)	3
Pag. 11	3.2	Parameters (read / write)	
•	3.2a	Parameters (read-only)	
-	3.3	Inputs / outputs / alarms status (read-only)	
Pag. 17	3.4	Device status (read / write)	
GLOSS	SARY		
Pag. 18	4	Glossary	4

1: GENERAL DESCRIPTION

1.1

MODBUS PROTOCOL

The data communication system based on Modbus protocol allows to connect up to 247 devices in a common RS485 line with standard format and communication mode.

Communication takes place in half duplex by frame (transmitted continuously); only master (PC , PLC ...) can start polling with slaves as question/answer (only one slave addressed) and the polled slave answers. The slave answers after a minimum pause of 3,5 characters between received frame and the one to be transmitted.

Also broadcast communication mode exists where the master send a request to all the slaves simultaneously, and they give no answer back; this mode it's not available with this controller.

The data serial transmission mode implemented on the controller is RTU type (Remote Terminal Unit), where data are exchanged in binary format (8 bit characters).

1.2

SERIAL CONFIGURATION

Serial line:	RS485
	1200, 2400, 4800,
Baud rate:	9600, 14400,
	19200, 38400
Data length:	8 bit
Parity:	none, even or odd

Serial transmission of characters in RTU format

Start	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Parity	Stop
									(optional)	

MESSAGE FORMAT (FRAME)

Each message (Frame) is made, based on MODBUS-RTU standard, by the following parts:

Start	Device address	Function code	Data	CR	C16	Stop
pause (3.5 times the character transmission period)	Byte	Byte	n x Byte	LSByte	MSByte	pause (3.5 times the character transmission period)

- Start / Stop:

Message starts with pause higher than 3.5 times the character transmission period. See chap. 1.4 for further clarifications.

Device address:

Device address with whom the master established the polling; it's a value between 1 and 247. Address 0 is reserved to the broadcast, message sent to all slave devices (not active on this controller). RS485 line allows to connect together up to 32 devices (1 Master + 31 slaves), but with appropriate "bridges" or relay devices it is possible to use the whole logical addressing field.

- Function Code:

Code of the function to be execute or already executed; On device are acteve codes 0x03 (register reading), 0x06 (single register writing) and 0x2B/0x0E (identification data reading).

- Data:

Data that must be exchanged.

- CRC16:

Error checking field based on CRC16 algorithm. CRC16 is calculated on the whole message by the master device which is trasmitting and attached to the message itself. The slave, at the end of reception, calculates CRC16 on the message and compares it with the value learnt by the master; if the values do not match, the message will be considered not valid and will be discarded without sending any answer to the master.

The following fragment of C code shows the CRC16 calculation mode:

```
unsigned int CRC16
void Modbus_CRC(unsigned char *Frame, unsigned char FrameLength)
unsigned char ByteCount;
unsigned char i;
unsigned char bit_lsb;
CRC16 = 0xFFFF;
for (ByteCount=0;ByteCount<FrameLength;ByteCount++)</pre>
 CRC16^=Frame[ByteCount];
 for (i=0;i<8,i++)
   bit lsb = CRC16 \& 0x0001;
   CRC16 = CRC16>>1;
   if (bit_lsb == 1)
    CRC16 ^= 0xA001;
   }
 }
}
```

MESSAGES SYNCHRONIZATION

Message synchronization between transmitter and receiver is made placing a pause on the messages at least 3.5 times the character transmission period. If the receiver does not receive any Byte for 3.5 times the character transmission period, consider the last message completed and set the next Byte received ad the first one of a new message.

The slave, once received the complete message, decodes it and, if there are no errors, sends the answer message to the master. To send the answer, slave keeps RS485 line busy, wait a pause of 3.5 times the character transmission period, send the complete message, wait 3.5 times the character transmission period and then release the RS485 line.

The master unit will have to consider these periods to avoid risks of transmission overlap; in particular must be set a proper answer reception time-out before starting a new transmission (typical time-out value: 500msec or higher, for a baud rate = 9600).

1.5

ERROR MESSAGES (EXCEPTIONS)

The device, if not possible to complete the required operation, answers with an error message, in the following format:

Device address	Function Code			C16
Byte	Byte	Byte	LSByte	MSByte

- Device address:

Address of slave device answering

- Function Code:

Function code MSb =1 (to show exception); i.e. 0x83 (for 0x03 reading) or 0x86 (for 0x06 writing)

- Exception Code:

Exception codes handled by the device are the following:

Exception code	Description	Exception cause
0x01	Function not implemented	A function code not available was requested, different from 0x03, 0x06 and 0x2B/0x0E.
0x02	Address not valid	 It's generated in several situations: a not implemented register has been requested (or a not-existing area) a reading of a number of registers that goes further on the implemented area has been requested (starting from requested address) tried to write on a read-only area
0x03	Value not valid for datum	It's generated in several situations: - message 0x2B/0x0E DeviceIdCode is not correct - has been tried to write a parameter with an out of range value

Error control field based on the CRC16 algorithm.

Note:

In case the device identifies in the received message an error on format or in CRC16, the message is discarded (considered not valid) and no answer is sent.

2: COMMANDS DESCRIPTION

All the registers, to equalize the interpretation, are handled in a Word format (16 bit), even if an 8-bit parameter is contained.

2.1

REGISTER READING (0x03)

Format of command sent by the Master:

Device address	Function Code	Register address			ber of sters	CR	C16
Byte	Byte	MSByte	LSByte	MSByte	LSByte	LSByte	MSByte

- Device address:

Address of slave device to be polled

Function Code:

Function code to be executed, in this case register reading (0x03)

- Register address:

Starting register address for reading expressed with two Bytes; (MSByte) and (LSByte).

Number of registers:

indicates the number of Word required from the starting address. If a number of registers more than 1 is requested, the answer message will provide all the registers required with consecutive addresses starting from the address shown on the "register address" field.

The number of registers to read is expressed on two Bytes, particularly for this controller (MSByte) must always be 0x00 and (LSByte) with range 1-10.

- CRC16:

Error control field based on the CRC16 algorithm.

Format of answer message from slave:

Device address	Function Code	Bytes of datum No.	Datum 1		Datu	ım 2	Datu	ım n	CR	C16
Byte	Byte	Byte	MSByte	LSByte	MSByte	LSByte	MSByte	LSByte	LSByte	MSByte

Device address:

Address of slave device answering

Function Code:

Function code to be answered to, in this case register reading (0x03)

- Bytes' number of datum:

Contains the total Bytes number of data.

Consider that the Bytes' number of datum is the double of the number of registers (because we talk about word). I.e. if in the polling message 2 registers are requested, in the answer message Bytes' number of datum must be set as 4.

- Datum n :

Contains data sequences each expressed on two Bytes; (MSByte) and (LSByte).

- CRC16:

Error control field based on the CRC16 algorithm.

SINGLE REGISTER WRITING (0x06)

Format of command sent by the Master:

Device address	Function Code		ister ress	Dat	tum	CR	C16
Byte	Byte	MSByte	LSByte	MSByte	LSByte	LSByte	MSByte

- Device address:

Address of slave device to be polled

Function Code:

Function code to be executed, in this case single register writing (0x06)

Register address:

address of register to write expressed with two Bytes; (MSByte) and (LSByte).

- Data:

Value to be assigned to the register expressed with two Bytes; (MSByte) and (LSByte).

- CRC16:

Error control field based on the CRC16 algorithm.

Format of answer message from slave:

Device address	Function Code	_	ister ress	Dat	tum	CR	C16
Byte	Byte	MSByte	LSByte	MSByte	LSByte	LSByte	MSByte

The answer message is a simple echo of the polling message to confirm that the variable has been modified.

MODBUS-RTU

2.3

DATA READING OF DEVICE IDENTIFICATION (0x2B / 0x0E)

Format of command sent by the Master:

Device address	Function Code	MEI type	Read Device Id Code	Object Id	CI	RC16
Byte	Byte	Byte	Byte	Byte	LSByte	MSByte

- Device address:

Address of slave device to be polled

Function Code:

Function code to be executed, in this case identification data reading (0x2B)

MEI type:

Modbus Encapsulated Interface type: it must be 0x0E.

Read Device Id Code:

Indicates the access type to data: it must be 0x01.

Object Id:

Indicates the starting object for data reading (range: 0x00 - 0x02).

- CRC16:

Error control field based on the CRC16 algorithm.

Format of answer message from slave:

Device address	Function code	MEI Type	Read Device Id Code	Confor mity level	More Follows	Next Object Id	Number Of Object	Object Id (n)	Object Length (n)	Object Value (n)	CR	C16
Byte	Byte	Byte	Byte	Byte	Byte	Byte	Byte	Byte	Byte	ASCII String	LSByte	MSByte

- Device address:

Address of slave device answering

Function Code:

Function code to be executed, in this case identification data reading (0x2B)

MEI type:

Modbus Encapsulated Interface type: it must be 0x0E.

- Read Device Id Code:

Indicates the access type to data: it must be 0x01.

Conformity level:

indicates the slave conformity level: it is always 0x01.

- More Follows:

indicates the number of additional transactions requested: it is always 0x00.

Next Object Id:

indicates the object that has to be requested in the eventual following transaction: it is always 0x00

- Number Of Object:

number of objects that follow (1, 2 o 3).

- List of:
- Object Id:

current object number.

- Object Length:

length of following string.

- Object Value:

ASCII string that contains the identification information.

- CRC16:

Error control field based on the CRC16 algorithm.

Reading example of all controllers identification information with software PLUSR_DL3 rel. 0 (address 1)

Demand message:

Device address: 0x01Function code: 0x2BMEI type: 0x0E

- Read DeviceIdCode: 0x01

- ObjectId: 0x00

- **CRC16:** to be calculated on previous values

Answer message:

Device address: 0x01Function code: 0x2BMEI type: 0x0E

Read DeviceIdCode: 0x01
 Conformity level: 0x01
 More Follows: 0x00
 Next ObjectId: 0x00
 Number Of Object: 0x03

- ObjectId: 0x00 - Object Length: 0x04

Object Value: 'PEGO' (Vendor Name field)

ObjectId: 0x01Object Length: 0x08

- Object Value: 'PLUSRDL3' (Product Code field)

ObjectId: 0x02Object Length: 0x03

Object Value: '000' (Revision field)CRC16: to be calculated on previous values

3: REGISTERS AND ADDRESSES DESCRIPTION

Each register has a 16 bit dimension. It has been formed some blocks of variables (each with a different MSByte address) basing on the the type of these variables. In the followings paragraphs are described in the detail all the available blocks and, for each block, the implemented variables.

At the beginning of each table it has been indicated in the first row if its data could be only read (READ-ONLY) or written and read (READ/WRITE).

TABLE COLUMNS DESCRIPTION:

- Register:

It indicates the register address that has to be used in the structure of Modbus command for reading or writing the data into device. It is expressed on two Bytes: (MSByte) and (LSByte).

- Description:

Description of the register and possible corresponding programming variable of the device.

- Meaning and Bytes range:

Dimension (MSByte and LSByte), allowed range and notes about register.

- U.M.:

Unit of measure of datum contained in the register.

Conv. :

Values contained in the registers that represent signed variables require a conversion and they are marked from **X** sign in the following column.

Conversion procedure:

- If the value contained in the register is included between 0 and 32767, it represents a positive or null number (the results is the value itself)
- If the value contained in the register is included between 32768 and 65535, it represents a negative number (the results is the register value 65536)

- Molt:

It indicates the multiplication factor that has to be mapped to register's datum and that coupled to columns U.m and Conv permits the right interpretation of the value to convert. Esempi:

A datum (0x0012) = 18 with Molt =0,1 / U.m= °C / Conv=C corresponds to a temperature of (18x0,1)=1,8 °C

A datum (0xFFF0) = 65520 with Molt =0,1 / U.m= $^{\circ}$ C / Conv=C corresponds to a temperature [(65520 – 65536) x0,1] = -1,6 $^{\circ}$ C

A datum (0x0078) = 120 with Molt =1 / U.m= min / Conv=C corresponds to a time of (120x1)= 120 minutes

A datum (0x0014) = 20 with Molt =0,1 / U.m= $^{\circ}$ C / Conv=C corresponds to a temperature of (20x0,1)= 2,0 $^{\circ}$ C

3.1

ANALOG INPUTS

READ-ONLY								
Register	Description		Bytes meaning and range	U.M.	Conv	Molt		
256	Channel 1	MSByte	Resolution 0,1°C	°C	V	0.1		
	LSByte	range: -45°C +99°C Values > +99°C indicate broken probe	ر	Х	0,1			
257	Channel 2	MSByte	Resolution 1°C	9.6	.,	0.1		
	temperature	LSByte	range: -45°C +99°C Values > +99°C indicate broken probe	ို	Х	0,1		
258	Channel 3	MSByte	Resolution 1°C	°C	V	0.1		
	temperature	LSByte	range: -45°C +99°C Values > +99°C indicate broken probe	°C	X	0,1		

PARAMETERS

READ / WRITE								
Register	Description		Bytes meaning and range	U.M.	Conv	Molt		
768	A11 Minimum temperature T1 alarm	MSByte LSByte	0.1 °C steps, with sign range: -45.0°C(A2-0.1°C)	°C	х	0.1		
769	A12 Maximum temperature T1 alarm	MSByte LSByte	0.1 °C steps, with sign range: (A1+0.1°C)+99.0°C	°C	х	0.1		
770	A21 Minimum temperature T2 alarm	MSByte LSByte	0.1 °C steps, with sign range: -45.0°C(A2-0.1°C)	°C	х	0.1		
771	A22 Maximum temperature T2 alarm	MSByte LSByte	0.1 °C steps, with sign range: (A1+0.1°C)+99.0°C	°C	х	0.1		
772	A31 Minimum temperature T3 alarm	MSByte LSByte	0.1 °C steps, with sign range: -45.0°C(A2-0.1°C)	°C	х	0.1		
773	A32 Maximum temperature T3 alarm	MSByte LSByte	0.1 °C steps, with sign range: (A1+0.1°C)+99.0°C	°C	х	0.1		
774	ALd temperature alarm signaling delay	MSByte LSByte	1 minutes steps range: 0240 minutes	min		1		
775	ALr Delay in alarm buzzer reactivation	MSByte LSByte	1 minutes steps range: 0240 minutes 0 = disabled	min		1		
776	Ind Delay in digital input display	MSByte LSByte	1 minutes steps range: 060 minutes	min		0		
777	BEE Buzzer enable	MSByte LSByte	0 = disabled 1 = enabled	num		1		

3.2a

PARAMETERS

READ-ONLY								
Registro	Descrizione		Significato e range Bytes	U.M.	Conv	Molt		
512	t1 temperature channel enabling	MSByte LSByte	0= Excluded 1= Enabled	num		1		
513	t2 temperature channel enabling	MSByte LSByte	0= Excluded 1= Enabled	num		1		
514	t3 temperature channel enabling	MSByte LSByte	0= Excluded 1= Enabled	num		1		
515	In1 Input 1 setting	MSByte LSByte	range: -2 +2 (0=disabled)	num		1		
516	In2 Input 2 setting	MSByte LSByte	range: -2 +2 (0=disabled)	num		1		
517	In3 Input 3 setting	MSByte LSByte	range: -2 +2 (0=disabled)	num		1		
518	tA Status changeover NA – NC alarm relays	MSByte LSByte	0= Contact closed with alarm presence 1= Contact opened with alarm presence	num		1		
519	SAv Automatic backup of recorder plus memory on USB device.	MSByte LSByte	0 = Excluded 1 = Every day at 12.00. 2 = Every first day of the month at 12.00.	num		1		
520	int Temperature registration interval,	MSByte LSByte	range: 0 ÷ 60 minutes If int =0 registration disabled	min		1		
521	ASr Asynchronous registration	MSByte LSByte	0 = disabled 1 = enabled	num		1		
522	BAt Backup battery state	MSByte LSByte	Power supply off: Battery level 0 100 % Power supply on: 0 : battery disconnected or broken 1 : battery charging 2 : battery charged	num		1		

INPUTS / OUTPUTS / ALARMS STATUS

READ-ONLY									
Register	Description		Ву	rtes meaning	U.M.	Conv	Molt		
1280		MSByte	bit 7 (MSb) bit 6 bit 5 bit 4 bit 3 bit 2 bit 1	Not used					
	output status	LSByte	bit 0 (LSb) bit 7 (MSb) bit 6 bit 5 bit 4 bit 3 bit 2 bit 1	Not used	num		1		
			bit 0 (LSb)	Alarm output					

READ-ONLY									
Register	Description		Bytes meaning				Molt		
			bit 7 (MSb)						
			bit 6						
			bit 5						
		MCDyto	bit 4	Not used					
		MSByte	bit 3	Not used					
			bit 2						
			bit 1						
4204			bit 0 (LSb)						
1281	input status		bit 7 (MSb)	Not used	num		1		
			bit 6	Not used					
			bit 5	Digital input 3 warning					
		I CD. +a	bit 4	Digital input 3 alarm					
		LSByte	bit 3	Digital input 2 warning					
			bit 2	Digital input 2 alarm					
			bit 1	Digital input 1 warning					
			bit 0 (LSb)	Digital input 1 alarm					

MODBUS-RTU

READ-ONLY								
Register	Description		B	ytes meaning	U.M.	Conv	Molt	
			bit 7 (MSb)	Digital input 2 alarm (Ei2)				
			bit 6	Digital input 1 alarm (Ei1)				
			bit 5	T3 low limit alarm (EL3)				
		NACD: #a	bit 4	T2 low limit alarm (EL2)				
		MSByte	bit 3	T1 low limit alarm (EL1)				
			bit 2	T3 high limit alarm (EH3)				
			bit 1	T2 high limit alarm (EH2)				
			bit 0 (LSb)	T1 high limit alarm (EH1)				
1282	alarms status 1		bit 7 (MSb)	Probe T3 error (E3)	num		1	
			bit 6	Probe T2 error (E2)				
			bit 5	Probe T1 error (E1)				
			bit 4	RTC Battery alarm (E6)				
		LSByte	bit 3	FLASH data write error (E5)				
			bit 2	EEPROM error(E0)				
			bit 1	Alarm EP1 Power supply alarm				
			bit 0 (LSb)	Alarm EP2 low battery				
			bit 7 (MSb)	Not used				
			bit 6	Not used				
			bit 5	Not used				
			bit 4	Not used				
		MSByte	bit 3	Not used				
			bit 2	Not used				
			bit 1	Not used				
			bit 0 (LSb)	Not used		Conv		
4000			bit 7 (MSb)	Not used				
1283	alarms status 2		bit 6	Not used	num		1	
			bit 5	Not used				
			bit 4	Not used				
		I I hit 3	Bluetooth – Error in date					
		LSByte		range configuration (Eb3)				
			bit 2	Bluetooth – Error in the printing process (Eb2)		Conv		
				Bluetooth – Connection				
			bit 1	module absent (Eb1)				
			bit 0 (LSb)	Digital input 3 alarm (Ei3)				

DEVICE STATUS

READ / WRITE								
Register	Description		Bytes meaning				Molt	
			bit 7 (MSb)	not used				
			bit 6	not used				
			bit 5	not used				
		MSByte	bit 4	not used				
		IVISBYLE	bit 3	not used				
			bit 2	enabling of mod. stand-by status 3				
			bit 1	enabling of mod. stand-by status 2				
			bit 0 (LSb)	enabling of mod. stand-by status 1				
			bit 7 (MSb)	not used				
			bit 6	not used				
1536	device status		bit 5	not used	num		1	
			bit 4	not used				
			bit 3	not used				
				stand-by status 3				
		LSByte	bit 2	1 = stand-by				
		,		0 = ON				
				stand-by status 2				
			bit 1	1 = stand-by				
				0 = ON	1			
				stand-by status 1				
			bit 0 (LSb)	1 = stand-by				
				0 = ON				

For asking the modification of one of device status bits, the master has to send into LSByte the requested value for the bit and into MSByte the corresponding bit set to 1. i.e.: for stand-by staus forcing, the master has to send MSByte = 00000001 and LSByte = 00000001.

4: GLOSSARY

- Binary Number:

It is used in computer science for the internal representation of numbers, thanks to the simplicity to physically realize an element with two state (0,1) instead an higher number, but also with the matching with the logic values TRUE and FALSE.

Decimal Numer:

On decimal system all whole numbers can be represented using the ten digits that indicates the first ten natural numbers, included zero. The value of each of these digits depends on the position occupied inside the number, and it increases in powers of 10, from right to left.

Hexadecimal Number:

It is part of a positional numeric system with base 16, that means it uses 16 symbols instead usual 10 of the traditional numerical deciaml system. Hexadecimal generally uses symbols from 0 to 9 and then letters from A to F, for a total 16 symbols. Conventionally an hexadecimal number is preceded by 0x (i.e. 0x03) or by H (i.e. H03).

- bit:

A bit is a binary digit that is one of the two symbols of numerical binary system, usually called zero (0) and one (1). It represents the definition unit of a logic state.

It's defined also as elementary unit of the information used by a computer.

- Byte:

It's the quantity of bit needed to define an alphanumeric character; particularly a Byte is made by a sequence of 8 bit (i.e. 10010110).

- Word:

Unit of measure that fixes information length at 16 bits that is equivalent to 2 Bytes (i.e. 10010110 01101011).

- LSb:

Less significant bit of a binary digit (first bit on the right of the indicated number)

- MSb:

Most significant bit of a binary digit (first bit on the left of the indicated number)

LSByte:

Less significant Byte of a Word (Byte on the right of the indicated Word)

MSByte:

Most significant Byte of a Word (Byte on the left of the indicated Word)

MODBUS-RTU **NOTE**

MODBUS-RTU

NOTE	

MODBUS-RTU **NOTE**

PEGO S.r.l.

Via Piacentina, 6/b

45030 OCCHIOBELLO -ROVIGO-

Tel: 0425 762906

Fax: 0425 762905

www.pego.it

e-mail: info@pego.it

Distributor: