MODBUS-RTU for PEVP20

MODBUS-RTU protocol specifications for network control of PEVP20

Document: MODBUS-RTU_PEVP20_01-23_ENG Installed Software: P20DRV_rX.hex

REED AND KEEP

REV. 01-23 ENG ELECTRICAL BOARDS FOR REFRIGERATING INSTALLATIONS

INDEX

GENER	AL DESC	CRIPTION	
Pag. 3	1.1	Modbus protocol	
Pag. 3	1.2	Serial configuration	
Pag. 4	1.3	Messages format (Frame)	
Pag. 5	1.4	Messages synchronization	
Pag. 5	1.5	Error messages (exceptions)	
СОММА	ANDS DE	SCRIPTION	
Pag. 6	2.1	Register reading (0x03)	2
Pag. 7	2.2	Single register writing (0x06)	
Pag. 8	2.3	Reading device identification data (0x2B / 0x0E)	
REGIST	TERS AN	ID ADDRESSES DESCRIPTION	2
Pag. 11	3.1	Analog inputs (read-only)	S
Pag. 11	3.2	Parameters (read / write)	
Pag. 14	3.3	Inputs / outputs / alarms status (read-only)	
GLOSS	ARY		
Pag 15	4	Glossary	4

Pag. 15 4

Glossary

1: GENERAL DESCRIPTION

MODBUS PROTOCOL

The data communication system based on Modbus protocol allows to connect up to 247 devices in a common RS485 line with standard format and communication mode.

Communication takes place in half duplex by frame (transmitted continuously); only master (PC, PLC ...) can start polling with slaves as question/answer (only one slave addressed) and the polled slave answers. The slave answers after a minimum pause of 3,5 characters between received frame and the one to be transmitted.

Also broadcast communication mode exists where the master send a request to all the slaves simultaneously, and they give no answer back; this mode it's not available with this controller.

The data serial transmission mode implemented on the controller is RTU type (Remote Terminal Unit), where data are exchanged in binary format (8 bit characters).

1.2

SERIAL CONFIGURATION

Serial line:	RS485
Baud rate:	300, 600, 1200, 2400, 4800, 9600,
Data length:	14400, 19200, 38400 8 bit
Parity:	none, even or odd

Serial transmission of characters in RTU format

Start	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Parity (optional)	Stop	
-------	-------	-------	-------	-------	-------	-------	-------	-------	----------------------	------	--

^{1.1}

MESSAGES FORMAT (FRAME)

Each message (Frame) is made, based on MODBUS-RTU standard, by the following parts:

Start	Device address	Function code	Data	CRC16		Stop
pause (3.5 times the character transmission period)	Byte	Byte	n x Byte	LSByte	MSByte	pause (3.5 times the character transmission period)

- Start / Stop :

Message starts with pause higher than 3.5 times the character transmission period. See chap. 4.1 for further clarifications.

- Device address:

Device address with whom the master established the polling; it's a value between 1 and 247. Address 0 is reserved to the broadcast, message sent to all slave devices (not active on this controller). RS485 line allows to connect together up to 32 devices (1 Master + 31 slaves), but with appropriate "bridges" or relay devices it is possible to use the whole logical addressing field.

- Function Code:

Code of the function to be execute or already executed; On device are active codes 0x03 (register reading), 0x06 (single register writing) and 0x2B/0x0E (identification data reading).

- Data:

Data that must be exchanged.

- CRC16:

Error checking field based on CRC16 algorithm. CRC16 is calculated on the whole message by the master device which is transmitting and attached to the message itself. The slave, at the end of reception, calculates CRC16 on the message and compares it with the value learnt by the master; if the values do not match, the message will be considered not valid and will be discarded without sending any answer to the master.

The following fragment of C code shows the CRC16 calculation mode:

```
unsigned int CRC16
```

void Modbus_CRC(unsigned char *Frame, unsigned char FrameLength)

```
{
unsigned char ByteCount;
unsigned char i;
unsigned char bit_lsb;
CRC16 = 0xFFFF;
for (ByteCount=0;ByteCount<FrameLength;ByteCount++)</pre>
 {
 CRC16<sup>+</sup>=Frame[ByteCount];
 for (i=0;i<8;i++)
   {
   bit lsb = CRC16 & 0x0001;
   CRC16 = CRC16>>1;
   if (bit_lsb == 1)
    CRC16 ^= 0xA001;
   }
 }
}
                        MODBUS-RTU SPECIFIC FOR
  Pag. 4
                               PEVP20 SERIES
```


MESSAGES SYNCHRONIZATION

Message synchronization between transmitter and receiver is made placing a pause on the messages at least 3.5 times the character transmission period. If the receiver does not receive any Byte for 3.5 times the character transmission period, consider the last message completed and set the next Byte received ad the first one of a new message.

The slave, once received the complete message, decodes it and, if there are no errors, sends the answer message to the master. To send the answer, slave keeps RS485 line busy, wait a pause of 3.5 times the character transmission period, send the complete message, wait 3.5 times the character transmission period and then release the RS485 line.

The master unit will have to consider these periods to avoid risks of transmission overlap; in particular must be set a proper answer reception time-out before starting a new transmission (typical time-out value: 500msec or higher, for a baud rate = 9600).

1.5

ERROR MESSAGES (EXCEPTIONS)

The device, if not possible to complete the required operation, answers with an error message, in the following format:

Device address	Function Code	Exception Code	CR	C16
Byte	Byte	Byte	LSByte	MSByte

- Device address:

Address of slave device answering

- Function Code:

Function code MSb =1 (to show exception); i.e. 0x83 (for 0x03 reading) or 0x86 (for 0x06 writing)

- Exception Code:

Exception codes handled by the device are the following:

Exception code	Description	Exception cause
0x01	Function not implemented	A function code not available was requested, different from 0x03, 0x06 and 0x2B/0x0E.
0x02	Invalid address	 It's generated in several situations: a not implemented register has been requested (or a not-existing area). a reading of a number of registers that goes further on the implemented area has been requested (starting from requested address). tried to write on a read-only area.
0x03	Value not valid for datum	 It's generated in several situations: message 0x2B/0x0E DeviceIdCode is not correct. has been tried to write a parameter with an out of range value.

- CRC16:

Error control field based on the CRC16 algorithm.

Note:

In case the device identifies in the received message an error on format or in CRC16, the message is discarded (considered not valid) and no answer is sent.

2: COMMANDS DESCRIPTION

All the registers, to equalize the interpretation, are handled in a Word format (16 bit), even if an 8-bit parameter is contained.

REGISTER READING (0x03)

Command format sent by the Master:

Device address	Function Code	Register address			ber of sters	CRC16	
Byte	Byte	MSByte	LSByte	MSByte	LSByte	LSByte	MSByte

- Device address:

Address of slave device to be polled

- Function Code:

Function code to be executed, in this case register reading (0x03)

- Register address:

Starting register address for reading expressed with two Bytes; (MSByte) and (LSByte).

- Number of registers:

indicates the number of Word required from the starting address. If a number of registers more than 1 is requested, the answer message will provide all the registers required with consecutive addresses starting from the address shown on the "register address" field.

The number of registers to read is expressed on two Bytes, particularly for this controller (MSByte) must always be 0x00 and (LSByte) with range 1-10.

- CRC16:

Error control field based on the CRC16 algorithm.

Format of the slave response message:

Device address	Function Code	Bytes of datum No.	Datum 1		Datu	ım 2	Datı	ım n	CR	C16
Byte	Byte	Byte	MSByte	LSByte	MSByte	LSByte	MSByte	LSByte	LSByte	MSByte

- Device address:

Address of slave device answering

- Function Code:

Function code to be answered to, in this case register reading (0x03)

- Bytes' number of datum:

Contains the total Bytes number of data.

Consider that the Bytes' number of datum is the double of the number of registers (because we talk about word). I.e. if in the polling message 2 registers are requested, in the answer message Bytes' number of datum must be set as 4.

- Datum n :

Contains data sequences each expressed on two Bytes; (MSByte) and (LSByte).

- CRC16:

Error control field based on the CRC16 algorithm.

SINGLE REGISTER WRITING (0x06)

Command format sent by the Master:

Device address	Function Code	Register address		Dat	tum	CR	C16
Byte	Byte	MSByte	LSByte	MSByte	LSByte	LSByte	MSByte

- Device address: Address of slave device to be polled
- Function Code:
 Function code to be executed, in this case single register writing (0x06)
- **Register address**: address of register to write expressed with two Bytes; (MSByte) and (LSByte).
- Data:

Value to be assigned to the register expressed with two Bytes; (MSByte) and (LSByte).

- CRC16:

Error control field based on the CRC16 algorithm.

Format of the slave response message:

Device address	Function Code	Register address		Datum		CRC16	
Byte	Byte	MSByte	LSByte	MSByte	LSByte	LSByte	MSByte

The answer message is a simple echo of the polling message to confirm that the variable has been modified.

READING DEVICE IDENTIFICATION DATA (0x2B / 0x0E)

Command format sent by the Master:

Device address	Function Code	MEI type	Read Device Id Code	Object Id	Cł	RC16
Byte	Byte	Byte	Byte	Byte	LSByte	MSByte

Device address: Address of slave device to be polled

- Function Code:
 Function code to be executed, in this case identification data reading (0x2B)
- MEI type: Modbus Encapsulated Interface type: it must be 0x0E.
- Read Device Id Code:
 Indicates the access type to data: it must be 0x01.
- Object Id:

Indicates the starting object for data reading (range: 0x00 - 0x02).

- CRC16:

Error control field based on the CRC16 algorithm.

Format of answer message from slave:

Device address	Function code	MEI Type	Read Device Id Code	Conformi ty level	More Follows	Next Object Id	Number of Object	Object Id (n)	Object Length (n)	Object Value (n)	CR	C16
Byte	Byte	Byte	Byte	Byte	Byte	Byte	Byte	Byte	Byte	ASCII String	LSByte	MSByte

- Device address:

Address of slave device answering.

- Function Code:

Function code to be executed, in this case identification data reading (0x2B)

MEI type:

Modbus Encapsulated Interface type: it must be 0x0E.

- Read Device Id Code:

Indicates the access type to data: it must be 0x01.

- Conformity level:

indicates the slave conformity level: it is always 0x01.

- More Follows:

indicates the number of additional transactions requested: it is always 0x00.

- Next Object Id:

indicates the object that has to be requested in the eventual following transaction: it is always 0x00

	MODBUS-RTU SPECIFIC FOR		Refrigeration
Pag. 8	PEVP20 SERIES	Rev. 01-23	Fego

- Number Of Object:

number of objects that follow (1, 2 o 3).

- List of:

- Object Id:

current object number.

- Object Length: length of following string.
- **Object Value**: ASCII string that contains the identification information.
- CRC16:

Error control field based on the CRC16 algorithm.

Reading example of all controllers identification information with software PEVP20 and address 1

Demand message: (01 2B 0E 01 00 70 77)

- Device address: 0x01
- Function code: 0x2B
- MEI type: 0x0E
- Read DeviceIdCode: 0x01
- ObjectId: 0x00
- CRC16: to be calculated on previous values

Answer message:

- Device address: 0x01
- Function code: 0x2B
- MEI type: 0x0E
- Read DeviceIdCode: 0x01
- Conformity level: 0x01
- More Follows: 0x00
- Next ObjectId: 0x00
- Number Of Object: 0x03
- ObjectId: 0x00
- Object Length: 0x04
- Object Value: 'PEGO' (ASCII Vendor Name field)
- ObjectId: 0x01
- Object Length: 0x08
- **Object Value**: 'P20_MS01' (ASCII Product Code field)
- ObjectId: 0x02
- Object Length: 0x03
- **Object Value**: '000' (ASCII Revision field)
- **CRC16:** to be calculated on previous values

3: REGISTERS AND ADDRESSES DESCRIPTION

Each register has a 16 bit dimension. It has been formed some blocks of variables (each with a different MSByte address) basing on the the type of these variables. In the followings paragraphs are described in the detail all the available blocks and, for each block, the implemented variables.

At the beginning of each table it has been indicated in the first row if its data could be only read (READ-ONLY) or written and read (READ/WRITE).

TABLE COLUMNS DESCRIPTION:

- Register:

It indicates the register address that has to be used in the structure of Modbus command for reading or writing the data into device. It is expressed on two Bytes: (MSByte) and (LSByte).

- Description:

Description of the register and possible corresponding programming variable of the device.

- Meaning and Bytes range:

Dimension (MSByte and LSByte), allowed range and notes about register.

- U.M. :

Unit of measure of datum contained in the register.

- Conv.:

Values contained in the registers that represent signed variables require a conversion and they are marked from \mathbf{X} sign in the following column.

Conversion procedure:

- If the value contained in the register is included between 0 and 32767, it represents a positive or null number (the results is the value itself)
- If the value contained in the register is included between 32768 and 65535, it represents a negative number (the results is the register value 65536)

- Molt:

It indicates the multiplication factor that has to be mapped to register's datum and that coupled to columns U.M. and Conv permits the right interpretation of the value to convert. Examples:

A datum (0x0012) = 18 with Molt =0,1 / U.m= °C / Conv=C corresponds to a temperature of (18x0,1)= 1,8°C A datum (0xFFF0) = 65520 with Molt =0,1 / U.m= °C / Conv=C corresponds to a temperature [(65520 – 65536) x0,1] = -1,6 °C A datum (0x0078) = 120 with Molt =1 / U.m= min / Conv=C corresponds to a time of (120x1)= 120 minutes A datum (0x0014) = 20 with Molt =0,1 / U.m= °C / Conv=C corresponds to a temperature of (20x0,1)= 2,0 °C

MODBUS-RTU SPECIFIC FOR PEVP20 SERIES

ANALOG INPUTS

READ-ONLY									
Register	Description		Bytes meaning and range			Molt			
1792	Suction temperature (S4)	MSByte LSByte	Resolution 0,1°C range: -45°C +99°C Value > +99°C indicate faulty probe	°C	x	0,1			
1793	Calculated evaporation temperature (S5)	MSByte LSByte	Resolution 0,1°C range: -50°C +70°C	°C	х	0,1			
1794	Evaporation pressure (S5)	MSByte LSByte	Resolution 0,1 bar range: -1.0 bar +60,0 bar Value > +60,0 bar indicate faulty probe	bar	x	0,1			
1795	Super heating temperature	MSByte LSByte	Resolution 0,1°C range: -50°C +70°C	°C	х	0,1			

3.2

PARAMETERS

READ / WRITE									
Register	Description		Meaning and range Bytes	υ.м.	Conv	Molt			
2048	Super heating setpoint	MSByte LSByte	steps of 0,1 °C range: 0,125,0 °C	°C		0,1			
2049	EEV Management of the EEV electronic valve	MSByte LSByte	steps of 1 range: 17	num		1			
2050	ErE Type of gas used	MSByte LSByte	steps of 1 range: 021	num		1			
2051	ECt Cycle time	MSByte LSByte	steps of 1 sec range: 120	sec		1			
2052	EPb proportional band	MSByte LSByte	steps of 1% range: 1100 %	%		1			
2053	Etl Integral time	MSByte LSByte	steps of 2 seconds range: 0500 seconds	sec		2			
2054	Etd Derivative time	MSByte LSByte	steps of 0,1 seconds range: 0,010,0 seconds	sec		0,1			
2055	EOE EEV opening with probe error	MSByte LSByte	steps of 1 % range: 0100 %	%		1			
2056	ESO EEV opening in the start	MSByte	steps of 1 % range: 0100 %	%		1			
	phase	LSByte	range: 0100 %						

MODBUS-RTU

2057	ESt Duration of start phase	MSByte LSByte	steps of 10 seconds range: 0Edt seconds	sec		10
2058	EdO EEV opening in post- defrost phase	MSByte LSByte	steps of 1 % range: 0100 %	%		1
2059	Edt Duration of post-defrost phase	MSByte LSByte	steps of 10 seconds range: ESt500 seconds	sec		10
2060	EHO Maximum EEV opening	MSByte LSByte	steps of 1 % range: 0100 %	%		1
2061	EP4 Pressure at 4 mA / 0 V	MSByte LSByte	steps of 0,1 bar range: -1,0EP2 bar	bar	х	0,1
2062	EP2 Pressure at 20 mA / 5 V	MSByte LSByte	steps of 0,2 bar range: EP460,0 bar	bar		0,2
2063	CA4 Suction temperature probe calibration	MSByte LSByte	steps of 0,1 °C range: -10,0+10,0 °C	°C	х	0,1
2064	CA5 Evaporation pressure probe calibration	MSByte LSByte	steps of 0,1 bar range: -10,0+10,0 bar	bar	х	0,1
2065	LSH Minimum threshold SH	MSByte LSByte	steps of 0,1 °C range: 0,0SET SH	°C		0,1
2066	ELS Low SH protection	MSByte LSByte	steps of 1 range: 09	num		1
2067	SHd Low SH alarm delay	MSByte LSByte	steps of 10 seconds range: 0240 tens of seconds	sec		10
2068	MOP Maximum evaporation temperature threshold	MSByte LSByte	steps of 1 °C range: (LOP+1)+45 °C	°C	Х	1
2069	EMO MOP protection	MSByte LSByte	steps of 1 % range: 0100 %	%		1
2070	MOd MOP alarm delay	MSByte LSByte	steps of 10 seconds range: 0240 tens of seconds	sec		10
2071	LOP Minimum evaporation temperature threshold	MSByte LSByte	steps of 1 °C range: -45(MOP-1) °C	°C	х	1
2072	ELO LOP protection	MSByte LSByte	Steps of 1 % range: 0100 %	%		1
2073	LOd LOP alarm delay	MSByte LSByte	steps of 10 seconds range: 0240 tens of seconds	sec		10
2074	tPF Valve force positioning	MSByte LSByte	steps 1% range: 0100%	%		1

2075	EPt Type of temperature transducer (S4)	MSByte LSByte	0 = NTC 1 = PT1000 2 = PTC (-45/80°C)	num	1
2076	In1 DI1 digital input setting	MSByte LSByte	steps of 1 range: -33	num	1
2077	In2 DI2 digital input setting	MSByte LSByte	steps of 1 range: -33	num	1
2078	DO1 DO1 digital output setting	MSByte LSByte	steps of 1 range: -22	num	1
2079	BEE Buzzer enable	MSByte LSByte	0: disable 1: enable	num	1
2080	DEF Restore default parameters	MSByte LSByte	Send 0x123 to restore default parameters (warning!!)	num	1

READ / WRITE									
Register	Description		Meaning and range Bytes U.M.						
1536	EEV opening value (EEV=6, refresh each 60 seconds)	MSByte LSByte	steps of 1% range: 0100%	%		1			

INPUTS / OUTPUTS / ALARMS STATUS

READ-ONLY									
Register	Description			Bytes meaning	U.M.	Conv	Molt		
2560	EEV opening status	MSByte LSByte	-	steps of 1% range: 0100%			1		
			bit 7 (MSb)	Not used					
			bit 6	Not used					
		MSByte	bit 5	Not used					
	alarms / inputs status		bit 4	Not used					
			bit 3	Not used					
			bit 2	DI - fixed request					
			bit 1 bit 0 (LSb)	DI - Defrost request DI - ON request of EEV			1		
2561		LSByte	bit 7 (MSb)	Not used	num				
			bit 6	EEPROM error					
			bit 5	LOP Alarm					
			bit 4	MOP Alarm					
			bit 3	LSH Alarm					
			bit 2	S5 probe error (E5)					
			bit 1	S4 probe error (E4)					
			bit 0 (LSb)	EEV valve open					
2562	rEL Software release	MSByte LSByte	Steps of 1 Range: 0999		num		1		

MODBUS-RTU SPECIFIC FOR PEVP20 SERIES

4: GLOSSARY

- Binary Number:

It is used in computer science for the internal representation of numbers, thanks to the simplicity to physically realize an element with two state (0,1) instead an higher number, but also with the matching with the logic values TRUE and FALSE.

- Decimal Numer:

On decimal system all whole numbers can be represented using the ten digits that indicates the first ten natural numbers, included zero. The value of each of these digits depends on the position occupied inside the number, and it increases in powers of 10, from right to left.

- Hexadecimal Number:

It is part of a positional numeric system with base 16, that means it uses 16 symbols instead usual 10 of the traditional numerical decimal system. Hexadecimal generally uses symbols from 0 to 9 and then letters from A to F, for a total 16 symbols. Conventionally an hexadecimal number is preceded by 0x (i.e. 0x03) or by H (i.e. H03).

- bit:

A bit is a binary digit that is one of the two symbols of numerical binary system, usually called zero (0) and one (1). It represents the definition unit of a logic state. It's defined also as elementary unit of the information used by a computer.

- Byte:

It's the quantity of bit needed to define an alphanumeric character; particularly a Byte is made by a sequence of 8 bit (i.e. 10010110).

- Word:

Unit of measure that fixes information length at 16 bits that is equivalent to 2 Bytes (i.e. 10010110 01101011).

- LSb:

Less significant bit of a binary digit (first bit on the right of the indicated number)

- MSb:

Most significant bit of a binary digit (first bit on the left of the indicated number)

- LSByte:

Less significant Byte of a Word (Byte on the right of the indicated Word)

- MSByte:

Most significant Byte of a Word (Byte on the left of the indicated Word)

PEGO s.r.l. Via Piacentina, 6/b 45030 Occhiobello ROVIGO - ITALY Tel. +39 0425 762906 e-mail: info@pego.it – www.pego.it

AFTER-SALES ASSISTANCE Tel. +39 0425 762906 e-mail: tecnico@pego.it

Distributor:

PEGO s.r.l. reserves the right to make amendments to this use manual at any moment.